翻訳と辞書
Words near each other
・ Dagmar Salén
・ Dagmar Schellenberger
・ Dagmar Sickert
・ Dagmar Urbancová
・ Dagmar von Mutius
・ Dagmar Wilson
・ Dagmar Wöhrl
・ Dagmar Švubová
・ Dagmar, Montana
・ Dagmara Domińczyk
・ Dagmara Wozniak
・ Dagmeh Daghildi
・ Dagmersellen
・ Dagger Peak
・ Dagger Records
Dagger symmetric monoidal category
・ Dagger Woods, Nova Scotia
・ Dagger, Arizona
・ Dagger-axe
・ Daggerboard
・ Daggerford
・ Daggering
・ Daggermouth
・ Daggernose shark
・ Daggerpod
・ Daggers (album)
・ Daggers (seaQuest DSV)
・ Daggers Springs, Virginia
・ Daggerspell
・ Daggertooth pike conger


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dagger symmetric monoidal category : ウィキペディア英語版
Dagger symmetric monoidal category
A dagger symmetric monoidal category is a monoidal category \langle\mathbb,\otimes, I\rangle which also possesses a dagger structure; in other words, it means that this category comes equipped not only with a tensor in the category theoretic sense but also with dagger structure which is used to describe unitary morphism and self-adjoint morphisms in \mathbb that is, a form of abstract analogues of those found in FdHilb, the category of finite-dimensional Hilbert spaces. This type of category was introduced by Selinger〔P. Selinger, ''( Dagger compact closed categories and completely positive maps )'', Proceedings of the 3rd International Workshop on Quantum Programming Languages, Chicago, June 30 - July 1, 2005.〕 as an intermediate structure between dagger categories and the dagger compact categories that are used in categorical quantum mechanics, an area which now also considers dagger symmetric monoidal categories when dealing with infinite-dimensional quantum mechanical concepts.
==Formal definition==

A dagger symmetric monoidal category is a symmetric monoidal category \mathbb which also has a dagger structure such that for all f:A\rightarrow B , g:C\rightarrow D and all A,B and C in Ob(\mathbb),
* (f\otimes g)^\dagger=f^\dagger\otimes g^\dagger:B\otimes D\rightarrow A\otimes C ;
* \alpha^\dagger_=\alpha^_:(A\otimes B)\otimes C\rightarrow A\otimes (B\otimes C);
* \rho^\dagger_A=\rho^_A:A \rightarrow A \otimes I;
* \lambda^\dagger_A=\lambda^_A: A \rightarrow I \otimes A and
* \sigma^\dagger_=\sigma^_:B \otimes A \rightarrow A \otimes B.
Here, \alpha,\lambda,\rho and \sigma are the natural isomorphisms that form the symmetric monoidal structure.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dagger symmetric monoidal category」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.